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Abstract. The dynamics of the ring dark soliton in an inhomogeneous Bose-Einstein condensates (BEC)
with thin disk-shaped potential trapping is investigated analytically and numerically. Analytical result
shows that the ring dark soliton is governed by a variable coefficients Korteweg-de Vries (KdV) equation.
The effect of the ring curvature (nonplanar geometry) and the inhomogeneous of the background on soliton
amplitude and the emitted radiation profiles are obtained analytically. The theoretical results are confirmed
by the direct numerical results.

PACS. 03.75.Lm Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons,
vortices and topological excitations – 03.75.Kk Dynamic properties of condensates; collective and
hydrodynamic excitations, superfluid flow

Solitons are fundamental non-linear coherent structures
in Bose-Einstein condensates (BEC). Experimental and
theoretical investigations for nonlinear evolution of soli-
tons in BEC have been paid increasing interests. Both
bright [1] and dark solitons [2] are observed and inves-
tigated in BEC. Recently [3], the concept of ring dark
soliton in BEC is introduced and the ring dark soliton in
a BEC with disk-shaped trap is studied, and predicted
the existence of both oscillatory and stationary ring dark
solitons.

Soliton’s dynamics, stability, and dissipation are im-
portant issues of experimental and theoretical considera-
tion in BEC. Because of the interaction with the thermal
cloud, soliton experiences thermal instabilities [4] and this
causes energy dissipation from soliton. The experimentally
observed dynamical instability [5] of dark soliton is due to
their quesi-1D character: when embedded in a higher di-
mension, a dark soliton stripe becomes unstable against
transverse perturbation and will bend via the snaking in-
stability and ultimately decay into vortices. However, the
instability band of the dark stripe solitons, characterized
by a maximum perturbation wavenumber Qmax, may be
suppressed by bending a dark stripe to close it into an
annulus of length L < 2π/Qmax [6]. On the other hand,
the soliton is expected to have a circular symmetry and
the stable ring dark soliton can be observed. Another im-
portant dynamical instability is caused by the inhomo-
geneity of the system. The longitudinal confinement fea-
tured in BEC experiments results in the instability when
the soliton moves through the inhomogeneous background
density, and leads to decay of soliton via sound emission
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from the soliton [7–10]. Certainly, the ring dark soliton in
trapped BEC is also experiences the instability of sound
emission. We also can expect that the ring dark soliton
also experiences the instability arises from the ring curva-
ture (i.e., the non-planar geometry effect introducing an-
other inhomogeneity). Hence, it is important to study the
dynamics and instability of ring dark soliton in BEC. How-
ever, the dynamics, the instability to sound emission and
the profiles of the emitted sound waves of the ring dark
soliton remains an open question in BEC. It is the aim
of the present paper to discuss these points analytically
in a BEC with disk-shaped trap. By using a perturbation
method, we show that the ring dark soliton in the radial
symmetric cylindrical BEC is governed by a variable coef-
ficients Korteweg-de Vries (KdV) equation. The reduction
to the KdV like equation may be useful to understand the
dynamics of ring dark soliton in trapped BEC. The an-
alytical expressions for the evolution of soliton, emitted
radiation profiles, and soliton oscillation velocity are ob-
tained.

The evolution of the weakly coupled BEC at low
temperature is governed by the time-dependent Gross-
Pitaevskii (GP) equation with the external disk-shaped
potential V (r)
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where ∇2 = ∂2/∂r2 + (1/r)∂/∂r and
∫

dV |Ψ|2 = N,
with N the number of atoms in BEC and n0 = |Ψ0|2
the peak density of the gas. ar = [�/(mωr)]1/2 and
az = [�/(mωz)]1/2 are the harmonic oscillator length in
the axial and transverse directions. ωr and ωz are fre-
quencies of the trap in the radial r and z direction, re-
spectively. Q = 4πasn

1/3
0 , with as the s-wave scattering

length, m the mass of the atom. Wave function Ψ, time
t, and variables (r, z) are normalized by

√
n0, m/(�n

2/3
0 ),

and n
−1/3
0 , respectively.

In order to investigate the dynamics of the ring solitary
wave in BEC, we consider the axially symmetric solitary
waves traveling along the radial direction in a BEC with
disk-shaped trap. The excitation is created in the BEC
with very thin disk-shaped trap, i.e., the case in which the
trapping potential in r-direction is much weaker than that
in z-direction, mathematically, ωr/ωz � 1, i.e., az � ar.
This means that the motion of atoms in the z-direction
is essentially frozen and is governed by the ground-state
wave function of the corresponding harmonic oscillator.
Hence, the excitations can propagate only in r-direction.
According to the above assumption, we can set [11]

Ψ(r, z, t) = G0(z)Φ(r, t), (3)

where G0(z) = exp[−(n1/3
0 az)−2z2/2] is the ground-state

wave function of the 1D harmonic oscillator with the po-
tential (n1/3

0 az)−4z2/2 in the z-direction. Then, substitut-
ing equation (3) into equation (1), we obtain
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]

Φ, (4)

where
∫ |Φ|2dxdy = N/(

√
πn

1/3
0 az) and Q′ = I0Q

is an effective interaction constant with I0 =∫ ∞
−∞ dzG4

0(z)/
∫ ∞
−∞ dzG2

0(z) = 1/
√

2. Because the contri-
bution of the higher-order eigenmodes of the harmonic os-
cillator in the z-direction is very small and can be safely
neglected, so, in deducing equation (4), we have multiplied
equation (1) by G∗

0(z) and then integrated once with re-
spect to z to eliminate the dependence on z [11,12]. Now
we seek for solution to equation (4) in the form

Φ(r, t) = A(r, t) exp[−iµt + iφ(r, t)], (5)

where µ is the chemical potential of the condensate and φ
is a phase function contributed from the excitation. Then,
equation (4) reduces to
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A + Q′A3 = 0. (7)

We now employ the standard reductive perturbation
method [13,14] to obtain the nonlinear evolution of the

ring dark soliton in BEC with weak nonlinear interac-
tion. The reductive perturbation method is successfully
used to study the nonlinear excitation in fluid physics,
plasma physics, and nonlinear optics [13–16]. In par-
ticular, the validity and usefulness of this perturbation
method is also demonstrated and confirmed in studying
the dynamics of shallow quasi-one dimensional solitons in
BEC [8,10,11]. According to the reductive perturbation
method, in order to obtain a self-consistent asymptotic
expansion in disk-shaped BEC, we define a small parame-
ter ε = Ω−2/3(n1/3

0 ar)−4/3 (because (n1/3
0 ar)−4 is small, Ω

is a parameter and, as see below, expresses the normalized
strength of the axial trap frequency) and two slow vari-
ables R = ε3/2r, ξ = ε1/2[t−∫

C(R)dr], where C(R) is the
inverse of the local velocity of the nonlinear excitations.
Then, the external potential V (r) takes the form

V (R) =
1
2
Ω2R2. (8)

For weak non-linear excitations, the dependent variables
can be scaled as

A = A0(R) + εA1(R, ξ) + ε2A2(R, ξ) + · · · , (9)

φ = ε1/2φ1(R, ξ) + ε3/2φ2(R, ξ) + · · · , (10)

when ε → 0, equations (9) and (10) indicate that the
condensate background A0(R), i.e., without perturbation,
is recovered.

Then, substituting the above expansions into equa-
tions (6, 7) and collecting the terms in the different powers
of ε, we can obtain each nth-order reduced equation. To
the leading order, O(1), we obtain the background expres-
sion

A0(R) =
√

[µ − V (R)]/Q′, (11)

To the next order, we have
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which results in

A1 = − 1
2Q′A0

∂φ1
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, (14)

and C2 = 1/Q′A2
0 is also obtained by plugging

equation (14) into equation (12). The expression of
C−1 =

√
Q′A0 actually is the same as the speed of sound,

i.e., C−1 ≡ cs =
√

Q′A0, which can also be easily obtained
from the dispersion relation of the excitations described
by equations (6, 7) [11]. At the next order, we have
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(16)
By using equation (14) and eliminating A2 and φ2 from
equations (15) and (16), we obtain

∂A1

∂R
− αA1

∂A1

∂ξ
+ β

∂3A1

∂ξ3
+

(
1

2R
+

d

dR
ln A0

)
A1 = 0,

(17)
where α = 3C/A0, β = C5/8. Equation (17) is a variable
coefficients KdV equation describing the small-amplitude
ring dark soliton in the radial inhomogeneous BEC. The
last term in equation (17) refers to the combined effect
of ring curvature and inhomogeneous caused by the trap-
ping. In the absence of the trapping, equation (17) reduces
to the ordinary cylindrical KdV equation describing the
small-amplitude ring dark soliton in the radial homoge-
neous BEC. It is important to note that, because there
are terms like R−1 and A−1

0 (R) in the above derived ex-
pressions, our perturbation results (including Eq. (17)) are
suitable for the cases far away from the cloud boundaries
and the center. Indeed, the present paper is focused on
considering the evolution of ring dark soliton under this
condition.

Introducing the transformations A1 = (6β/α)u, χ =∫
βdR, equation (17) reduces to

∂u

∂χ
− 6u

∂u

∂ξ
+

∂3u

∂ξ3
= P (χ)u, (18)

where
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)
.

For a planar (R → ∞, R−1 → 0) and homogeneous BEC
(d/dR = d/dχ = 0 in P (χ)), i.e., P (χ) = 0, equation (18)
is a one-dimensional KdV equation, which has a single-
soliton solution of the form

u = −2κ2sech2Z, Z = κ[ξ − ϑ(χ)], (19)

where ϑ(χ) = 4κ2χ + ϑ0 is the soliton center (with
dϑ/dχ = 4κ2 being the soliton velocity in the ξ − χ refer-
ence frame), while κ and ϑ0 are arbitrary constants pre-
senting the soliton’s amplitude and initial position, respec-
tively.

Now we discuss the evolution of ring dark soliton of
equation (18) in inhomogeneous BEC, i.e., in the presence
of the external trapping potential. An analytical solution
of equation (18) can be obtained by using a suitable per-
turbation theory for soliton. In regions of small density
gradients (this can be satisfied by the local density ap-
proximation) and for larger ring radius (this is the most
interesting case), the right hand side of equation (18) can
be treated as a small perturbation. The solution of equa-
tion (18) can be expressed as [17,18]

u = us + ur (20)

where us is the soliton part, which has the same func-
tional form as in the unperturbed homogeneous case (cf.,

Eq. (19)), but with the soliton parameters κ and ϑ being
now unknown functions of χ. The contribution ur, being
of the same order of the smallness as P (χ), denotes the
radiation part of the solution due to the effect of axial in-
homogeneity. According to [17,18], the soliton’s amplitude
κ(χ) and center ϑ(χ) are determined by

dκ

dχ
=

2
3
κP (χ),

dϑ

dχ
= 4κ2 +

1
3κ

P (χ) (21)

Integrating of equation (21) and with the help of equa-
tions (8) and (11), one can obtain the soliton’s amplitude
κ(χ) and center ϑ(χ) expressed in terms of the slow vari-
able R

κ(R) = κ(R0)
(

R0

R

)1/3 [
A0(R)
A0(R0)

]4/3

, (22)

ϑ(R) = − 1
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R
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4/3
0 (R0)
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−4/3
0 (R)dR

+
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4Q′5/2

R
2/3
0 A

−8/3
0 (R0)

∫
R−2/3A

−7/3
0 (R)dR

− Ω2

3κ(R0)Q′ R
−1/3
0 A

4/3
0 (R0)

∫
R4/3A

−10/3
0 (R)dR

(23)

where κ(R0) and A0(R0) are the soliton amplitude and
density at R = R0, respectively. It is clear that, because
of the ring curvature (nonplanar geometry) and the inho-
mogeneous of the background, the ring dark soliton ampli-
tude vary according to (R0/R)1/3[A0(R)/A0(R0)]4/3 law
as it propagates. Following [17], the radiation part of the
soliton is expressed by

ur = − 8Q′5/2A5
0(R)

3κ(R)
d

dR
{ln[R1/2A−2

0 (R)]}F (Z) (24)

F (Z) =
[
1 + Z −

(
Z2

2
+ Z +

π2

24
+

3
4

)
tanhZ

]
sech2(Z)

− 1
2
(1 − tanhZ). (25)

One can find from equation (24) clearly that the sound
emission from soliton is caused by the ring curvature (i.e.,
nonplanar geometry introducing another inhomogeneity)
and the inhomogeneous of the background. When the ring
soliton propagates in inhomogeneous BEC, a continual en-
ergy transfer from the soliton to this radiation wave oc-
curs. On the other hand, energy carried by this radiation
wave expresses the energy emitted by the soliton [18]. If
the background is homogeneous (i.e., d/dR = 0), then the
radiation will vanishes.

Taking into account the transformation A1 = (6β/α)u
and equations (9), (20) and (14), we have a first order
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solution of equations (6, 7) as

A = A0 + εA1

= A0

[
1 − 1

2
εκ2(R)

Q′2A4
0(R)
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]
− 2εQ′1/2A2

0(R)
3κ(R)
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{
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φ =
ε1/2κ(R)
Q′A2

0(R)
tanh(Z) +

4ε1/2Q′3/2A3
0(R)

3κ(R)

× d

dR
{ln[R1/2A−2

0 (R)]}
∫

dξF (Z). (27)

If the radiation loss is neglected, then equations (26, 27)
reduce to

A = A0

[
1 − 1

2
εκ2(R)

Q′2A4
0(R)

sech2(Z)
]

(28)

φ =
ε1/2κ(R)
Q′A2

0(R)
tanh(Z). (29)

Then, the GP equation (4) has the solution of the form

Φ = A0(R)
[
1 − 1

2
εκ2(R)

Q′2A4
0(R)

sech2(Z)
]

exp(−iµt + iφ).

(30)
Now we discuss the variation law of the amplitude of the
excitation (soliton), i.e., |A−A0|, under the effect of sound
emission. According to equation (26), the peak value of
|A − A0| occurs near Z = 0, so, we expand equation (26)
about Z = 0 to O(Z2) with the result

|A − A0| =
1
2

εκ2(R)
Q′2A3

0(R)
(1 − Z2)

+
εQ′1/2A2

0(R)
3κ(R)

d

dR
{ln[R1/2A−2

0 (R)]}

×
[
1 +

1
2

(
3 − π2

6

)
Z + 4Z2

]
. (31)

From d|A − A0|/dZ = 0, we find that the peak occurs at
Z = Zm with

Zm =
εQ′1/2A2

0(R)
6κ(R)

(
3 − π2

6

)

× d

dR

{
ln[R1/2A−2

0 (R)]
}/[

8 +
εκ2(R)

Q′2A3
0(R)

]
. (32)

Hence, inserting equation (32) into equation (31), we ob-
tain the amplitude of the excitation (soliton)

|A − A0|m =
εκ2(R)

2Q′2A3
0(R)

+
εQ′1/2A2

0(R)
3κ(R)

× d

dR

{
ln

[
R1/2A−2

0 (R)
]}

+ Z2
m

[
4 +

εκ2(R)
2Q′2A3

0(R)

]
(33)

Fig. 1. Evolution of the ring dark soliton.

Equation (33) gives the variation of the amplitude of the
ring dark soliton due to the radiation of sound caused
by the ring curvature and the inhomogeneity of the BEC
background.

To confirm our theoretical result, the evolution of ring
dark soliton is also investigated numerically. For conve-
nience, we rescale the wavefunction in equation (4) by
Φ = Φ′/

√
Q′, then, still expresses the variable Φ′ by Φ,

equation (4) reduces to

i
∂Φ
∂t

=
[
−1

2
∇2 + V (r) + |Φ|2

]
Φ. (34)

Equation (34) is integrated numerically by means of the
fourth-order Runge–Kutta scheme in time along with a
second-order finite difference discretization in space. The
spatial discretization step used in the simulations is typi-
cally (∆x, ∆y) = (0.1, 0.1). The time step of the integra-
tor is ∆t = 0.0025. The initial condition used to integrate
equation (34) is given by equation (30) at t = 0 and with
Q′ = 1. We should note, however, that the initial condition
given by equation (30) is not suitable for direct numeri-
cal integration due to the deviation from the background
profile near the boundaries, where φ must be flat and A
must approach the background solution A0. Such pertur-
bations result in non-desired pulses propagating inwards
from the boundaries to the center of the interval. To avoid
this problem, we correct the initial condition (30) in such
a way that they approach the stationary background solu-
tion near boundaries (far from the initial soliton position
r = r0), and keep the shape of the soliton (30) in the
vicinity of r = r0. The parameters of r0 = 28.9, ε = 0.1,
and Ω = 0.028 are used. The evolution of the ring dark
soliton is shown in Figure 1. It is clear that, as the time
goes on, the ring soliton moves inward initially, attains
the maximum contrast with minimum radius at t � 40
and then bounces back. The ring soliton oscillates in the
BEC cloud. When the ring oscillating in BEC, the ring
soliton emit radiation because of the background inhomo-
geneity. The radiation is enhanced continuely when the
ring is bounced back. Because the radiation loss, the ring
will decay after about three oscillating. Those behaviour
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Fig. 2. Variation of soliton amplitude against radial r.

are approximately the same as predicted in reference [3].
Figure 2 shows the variation of the ring soliton amplitude
|A − A0|m against radius r. In Figure 2, both theoreti-
cal result given by equation (33) and the numerical result
of equation (4) are show. We can find that, as the ring
shrinks, the ring soliton amplitude increases. When the
ring bounces back and expands outward, the ring soliton
amplitude decreases. The overall variation law of the ring
soliton amplitude given by our theoretical result is approx-
imately in accordance with the numerical result. Strictly
speaking, our theoretical results are suitable for the case
of large ring radius (r) and far away from the turning
points. This is clearly revealed in Figure 2: as the ring
approaches the center (i.e., r < 13) and bounces back,
the theoretical result deviates from the numerical result
quantityly. The difference between the theoretical result
and the numerical result increases as time goes on. How-
ever, Figure 2 indicates that our theoretical result gives a
very good approximation for the ring soliton during the
initial periods.

In summary, the evolution of ring dark soliton in a
BEC with disc-shaped external potential is studied by
both perturbation and numerical method. Theoretical
analysis shows that the ring dark soliton is governed by a

variable-coefficients KdV equation. The reduction to the
KdV equation may be useful to understand the dynam-
ics of ring dark soliton and will help to get a deeper in-
sight into the physics of the dark soliton in inhomogeneous
BEC. The analytical expressions for the evolution of soli-
ton and emitted radiation profiles are also obtained explic-
itly. The numerical results confirm our theoretical results.
All these results are not predicted in previous work [3].
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